Estão todos prontos crianças?!
Trabalho de matemática Gráfico da função exponencial Prepare o caderno. Boa sorte nessa aventura!!
0
0
0
1
Ao observar, em um microscópio, uma cultura de bactérias, um cientista percebeu que elas se reproduzem como uma função exponencial. A lei de formação que relaciona a quantidade de bactéricas existentes com o tempo é igual a f(t) = Q · 2t-1, em que Q é a quantidade inicial de bactérias e t é o tempo em horas. Se nessa cultura havia, inicialmente, 700 bactérias, a quantidade de bactérias após 4 horas será de:
15.300
5600
7000
87000
2
A expressão P(t) = K · 20,05t fornece o número P de milhares de habitantes de uma cidade, em função do tempo t, em anos. Se, em 1990, essa cidade tinha 300.000 habitantes, quantos habitantes, aproximadamente, espera-se que ela tenha no ano 2000?
352.000
401.000
423.000
3
O acréscimo de tecnologias no sistema produtivo industrial tem por objetivo reduzir custos e aumentar a produtividade. No primeiro ano de funcionamento, uma indústria fabricou 8000 unidades de um determinado produto. No ano seguinte, investiu em tecnologia adquirindo novas máquinas e aumentou a produção em 50%. Estima-se que esse aumento percentual se repita nos próximos anos, garantindo um crescimento anual de 50%. Considere P a quantidade anual de produtos fabricados no ano t de funcionamento da indústria. Se a estimativa for alcançada, qual é a expressão que determina o número de unidades produzidas P em função e t, para t ≥ 1?
P(t)=8000.(1,5)t-5
P(t)=0,5.t-1+8000
P(t)=4000.t-1+8000
P(t)=50.t-1+8000
4
Dada uma função de R → R com a lei de formação f(x) = ax, em que a é um número positivo diferente de 1, julgue as afirmativas a seguir: I → Essa função será crescente se a for positivo. II → Se x = 0, então, f(x) = 1. III → Essa é uma função exponencial. Marque a alternativa correta
Todas são falsas
Todas são verdadeiras
II é falsa
I é falsa
5
Dada a função f(x) = 2x+3 + 10, o valor de x para que f(x) = 42 é de:
2
4
6
5
3
6
Um botânico, encantado com o pau-brasil, dedicou-se, durante anos de estudos, a conseguir criar uma função exponencial que medisse o crescimento dessa árvore no decorrer do tempo. Sua conclusão foi que, ao plantar-se essa árvore, seu crescimento, no decorrer dos anos, é dado por C(t) = 0,5 · 2t – 1. Analisando essa função, quanto tempo essa árvore leva para atingir a altura de 16 metros?
6 anos
8 anos
5 anos
7 anos